Kamenar, B., Korpar-Čolig, B., Hergold-Brundić, A. \& Popović, Z. (1982). Acta Cryst. B38, 1593-1595.

Matković-Čalogović, D., Popović, Z. \& Korpar-Čolig, B. (1995). J. Chem. Crystallogr. 25, 453-458.
Sheldrick, G. M. (1990). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sinha, S. P. (1965). Z. Naturforsch. Teil A, 20, 1661-1664.
Spek, A. L. (1990). Acta Cryst. A46. C-34.
Stoe \& Cie (1995a). STADI4. Diffractometer Control Program for Windows. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1995b). X-RED. Data Reduction Program for Windows. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1998). C54, 1768-1770

Bis(dihydrogen phosphato- O)[(1SR,4SR,-8RS,11RS)-1,4,8,11-tetraazacyclotetra-decane- $\left.\kappa^{4} N\right]$ nickel(II)

Saoussen Namouch Cherni, Ahmed Driss, Mohamed El Maaoui and Tahar Jouini

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia. E-mail: tahar.jouini@fst.rnu.tn
(Received 16 January 1998; accepted 11 June 1998)

Abstract

The $\mathrm{Ni}^{\mathrm{II}}$ ion in the title compound, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}-\right.$ $\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)$], is six-coordinate in a distorted square bipyramidal environment. The crystal structure consists of two molecules of the title compound, each residing on a centre of inversion. Four tetramine N atoms of the macrocyclic ligand are equatorial [average Ni N distance $=2.07(1) \AA$] and two O atoms, one from each dihydrogen phosphate ion, are axial [average Ni O distance $=2.12(3) \AA$]. The structure of the title complex consists of a three-dimensional framework, which delimits intersecting a-axis, b-axis and c-axis tunnels. Two types of hydrogen bonds, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, ensure the cohesion and stability of the molecular packing.

\section*{Comment}

The $\mathrm{Ni}^{\mathrm{II}}$ complexes of cyclic tetramines have been studied extensively because of their diverse stereochemistry. We describe here the crystal structure of the title compound, (I). There are two crystallographically distinct molecules in the asymmetric unit. The coordination geometry around each of the central atoms is the same, while the interatomic distances and angles

differ slightly between the two units centred on Nil and Ni 2 . These units are stacked in alternating sheets normal to the c axis at $z=0$ and $z=\frac{1}{2}$, respectively. In each sheet, the molecules centred on Ni 1 and Ni 2 are connected by strong hydrogen bonds to form ribbons running along [010] and [100], respectively. The sheets are held together by hydrogen bonds established between ribbons in perpendicular directions, giving rise to a three-dimensional framework which delimits intersecting tunnels. Each $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]$ group is anchored by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to different $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$tetrahedra. The latter anion is connected to three other anions through strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form infinite ribbons spreading in the [001] direction.

(I)

The coordination geometry around each $\mathrm{Ni}^{\mathrm{II}}$ ion is slightly distorted square bipyramidal with four equatorial N atoms and two axial O atoms. The configurations of the four chiral N -atom centres are $1 S R$, $4 S R, 8 R S$ and $11 R S$. The $\mathrm{Ni}-\mathrm{N}$ distances [2.056(1)2.090 (1) \AA] agree with corresponding values found in similar nickel complexes (Mukherjee et al., 1995). The observed lengthening of $\mathrm{Nil}-\mathrm{Ol}$ [2.099(1) \AA] and $\mathrm{Ni} 2-\mathrm{O} 5$ [2.141 (1) A] compared with $\mathrm{Ni}-\mathrm{N}$ may be due to steric constraints introduced by the coordinating bulky $\mathrm{H}_{2} \mathrm{PO}_{4}$ ligand. These distances are similar to those reported for [N -(3-aminopropyl)-1,3-propanedi-

Fig. 1. ZORTEP (Zsolnai, 1994) probability view (50%) of one of the two independent molecules of (I). H atoms are shown as spheres of arbitrary radii. [Symmetry code: (i) $-x,-y,-z$.]
amine]diaquasulfatonickel(II) monohydrate (Mukherjee et al., 1995).

Each Ni atom lies exactly in the plane defined by the four surrounding N atoms (as required by symmetry). The planarity of this environment is similar to the cases of copper(II) and nickel(II) complexes of 4-methyl-4,7-diazadecane-1,10-diamine (Lu et al., 1997). The geometrical features of the $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$groups are quite regular and can be compared with those observed in similar structures (Abdellahi \& Jouini, 1995).

The structure of the title complex delimits intersecting a-axis, b-axis and c-axis tunnels within which the $d_{\text {min }}$ and $d_{\text {max }}$ dimensions are $2.73(5) / 3.82(5)$, $2.76(5) / 2.81$ (3) and $2.76(5) / 3.82(5) \AA$, respectively. It is stabilized by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

The title complex was synthesized in a sealed vessel by hydrothermal crystallization of nickel nitrate, 1,4,8,11-tetraazacyclotetradecane and phosphoric acid in ethanolic solutions.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]$
$M_{r}=453.01$
Triclinic
$P \overline{1}$
$a=9.4915(10) \AA$
$b=10.3342(8) \AA$
$c=9.1930(9) \AA$
$\alpha=89.607$ (7) ${ }^{\circ}$
$\beta=90.489(8)^{\circ}$
$\gamma=93.555(8)^{\circ}$
$V=899.93(15) \AA^{3}$
$Z=2$
$D_{x}=1.672 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical ψ scan (North et al., 1968)
$T_{\text {min }}=0.77, T_{\text {max }}=0.82$
3760 measured reflections
3529 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=11.66-15.04^{\circ}$
$\mu=1.303 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Cubic
$0.37 \times 0.37 \times 0.15 \mathrm{~mm}$
Brown

3127 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.008$
$\theta_{\text {max }}=25.97^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=0 \rightarrow 11$
1 standard reflection frequency: 120 min intensity decay: 0.6%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.0570$
$S=1.066$
3529 reflections
342 parameters
All H atoms refined
$\Delta \rho_{\text {max }}=0.281 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.282 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0081 (8)

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0262 P)^{2} \\
&+0.4246 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{r}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=-0.001
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Ni 1 - N 2	2.072 (1)	$\mathrm{Pl}-\mathrm{O} 3$	1.574 (1)
Nil-N1	2.075 (1)	P2-O5	1.490(1)
Nil-OI	2.099 (1)	$\mathrm{P} 2-\mathrm{O} 6$	$1.518(1)$
$\mathrm{Ni} 2-\mathrm{N} 3$	2.056 (1)	P2-08	1.567 (1)
$\mathrm{Ni} 2-\mathrm{N} 4$	2.090 (1)	$\mathrm{P} 2-\mathrm{O} 7$	1.569(1)
$\mathrm{Ni} 2-\mathrm{O} 5$	2.141 (1)	$\mathrm{O} 3-\mathrm{HO}_{3}$	0.72 (2)
$\mathrm{Pl}-\mathrm{Ol}$	1.486 (1)	O4- HO 4	0.75 (3)
$\mathrm{P} 1-\mathrm{O} 2$	1.516 (1)	O7-HO7	0.79 (3)
$\mathrm{Pl}-\mathrm{O} 4$	1.571 (1)	O8-HO8	0.83 (3)
$\mathrm{N} 2^{\prime}-\mathrm{Nil}-\mathrm{N} 1^{1}$	85.09 (6)	$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 4$	110.40 (8)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{N} 1^{1}$	94.91 (6)	$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 4$	107.96(8)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{Nl}$	85.09 (6)	$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 3$	108.28 (7)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{Ol}^{\prime}$	92.03 (5)	$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 3$	110.39 (7)
N1-Nil-O1'	90.33 (5)	O4-PI-O3	105.94 (8)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{Ol}$	87.97 (5)	$\mathrm{O} 5-\mathrm{P} 2-\mathrm{O} 6$	115.44 (7)
$\mathrm{Ni}-\mathrm{Nil}-\mathrm{Ol}$	89.67 (5)	O5-P2-O8	106.30 (7)
N3-Ni2-N4 ${ }^{\prime \prime}$	94.48 (6)	O6-P2-08	109.74 (7)
N3-Ni2-N4	85.52 (6)	$\mathrm{O5}-\mathrm{P} 2-\mathrm{O} 7$	110.26 (8)
$\mathrm{N} 4-\mathrm{Ni} 2-\mathrm{O} 5^{11}$	94.60 (5)	$\mathrm{O} 6-\mathrm{P} 2-\mathrm{O} 7$	108.70 (7)
$\mathrm{N} 3^{\prime \prime}-\mathrm{Ni} 2-\mathrm{O} 5$	89.91 (6)	$\mathrm{O} 8-\mathrm{P} 2-\mathrm{O} 7$	105.97 (9)
$\mathrm{N} 3-\mathrm{Ni} 2-\mathrm{O} 5$	90.09 (6)	$\mathrm{Pl}-\mathrm{Ol}-\mathrm{Ni}]$	145.25 (8)
$\mathrm{N} 4-\mathrm{Ni} 2-\mathrm{O} 5$	85.40 (5)	$\mathrm{P} 2-\mathrm{O} 5-\mathrm{Ni} 2$	129.71 (7)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 2$	113.61 (7)		

Table 2. Hydrogen-bonding geometry $\left(A^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D—H	H...A	D. . A	D-H. . .
O3-HO3...O2 ${ }^{1}$	0.72 (2)	1.87 (3)	2.596 (2)	174 (3)
O4- $\mathrm{HO}_{4} \cdots{ }^{\text {. }}{ }^{1}$	0.75 (3)	1.87 (3)	2.616 (2)	170 (3)
O7-HO7...O2	0.79 (3)	1.84 (3)	2.628 (2)	171 (3)
O8-HO8 . . $\mathrm{O6}^{11}$	0.83 (3)	1.78 (3)	2.612 (2)	173 (2)
N1-HN1 . . O7	0.85 (2)	2.25 (2)	3.087 (2)	165 (2)
N 2 - $\mathrm{HN} 2 \cdots \mathrm{O} 3$	0.84 (2)	2.19 (2)	2.992 (2)	160 (2)
N3--HN3...O6	0.83 (2)	2.42 (2)	3.185 (2)	152 (2)
N3-HN3. . O^{4}	0.83 (2)	2.58 (2)	3.295 (2)	145 (2)
N4-HN4. . $\mathrm{O}^{\text {¹] }}$	0.80 (2)	2.52 (2)	3.239 (2)	149 (2)

Symmetry codes: (i) $-x, 1-y,-z$: (ii) $-x, 1-y, 1-z$; (iii) $1-x, 1-$ $y, 1-z$.
For data collection, the θ-scan width was $(0.75+0.5 \tan \theta)^{\circ}$. Data were corrected for Lorentz and polarization effects.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992; Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93. Molecular graphics: ZORTEP (Zsolnai, 1994). Software used to prepare material for publication: SHELXL93.

Thanks are due to Mr T. Labassi and Mr S. Barkalah, Faculty of Sciences, Tunis, Tunisia, for assistance with the English in the manuscript.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1017). Services for accessing these data are described at the back of the journal.

References

Abdellahi, M. O. \& Jouini, T. (1995). Acta Cryst. C51, 924-926. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Lu, T.-H., Tahirov, T. H., Shu, K. \& Chung, C.-S. (1997). Acta Cryst. C53, 204-206.
Macíček, J. \& Yordanov, A. (1992). J. Appl. Crust. 25. 73-80.
Mukherjee, M., Mukherjee, A. K., Pariya, C. \& Chaudhuri, N. R. (1995). Acta Cryst. C51, 1543-1545.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Zsolnai, L. (1994). ZORTEP. Program for the Presentation of Thermal Ellipsoids. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 1770-1773

Investigations of Complexes of Copper(II) Chloride with Phenylpyrazoles

Magdalena Maeecka, ${ }^{a}$ Mieczyslaw J. Grabowski, ${ }^{a}$ Tomasz A. Olszak, ${ }^{a}$ K. Kostka ${ }^{b}$ and M. Strawiak ${ }^{b}$
${ }^{a}$ Department of Crystallography, University of Łódź, Pomorska 149/153, PL-90236 tódź, Poland, and ${ }^{b}$ Institute of Chemistry, Faculty of Pharmacy, Medical University, Muszyńskiego I, PL-90151 Łódえ, Poland. E-mail: malecka@krysia.uni.lodz.pl

(Received 9 April 1998; accepted 25 June 1998)

Abstract

The crystal structures of dichlorobis(3,5-diphenylpyra-zole- N^{2})copper(II), $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]$, (I), dichlorobis(5 -phenylpyrazole- N^{2}) copper(II), $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, (II), and dichlorobis (1 -phenylpyrazole- \bar{N}^{2}) copper(II), $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, (III), have been determined from X-ray diffraction data. There are significant differences in the coordination of the Cl^{-}ions to the Cu^{2+} ion. The coordination of the Cu^{2+} ion is distorted square pyramidal in compounds (I) and (II), and distorted tetrahedral in (III). All available $\mathrm{N}-\mathrm{H}$ groups form hydrogen bonds, which are intra- and intermolecular in (I), and intramolecular in (II). An $\mathrm{N}-\mathrm{H}$ group in (I) forms a bifurcated hydrogen bond. Intermolecular intereactions between neighbouring molecules form dimers and chains in (I) and (II), respectively.

Comment

This paper deals with X-ray crystal structure studies on copper(II) chloride complexes of phenylpyrazoles. Previous studies on copper(II)-substituted pyrazole complexes were undertaken on their protolitic properties and on the influence of the nature and position of substituents on metal complexation (Kostka \& Strawiak, 1982; Goslar et al., 1987, 1988; Nasiadek, 1985).

The X-ray structure analyses of dichlorobis(3,5-diphenylpyrazole) copper(II), (I), dichlorobis(5-phenylpyrazole)copper(II), (II), and dichlorobis(1-phenylpyrazole)copper(II), (III), were undertaken to elucidate the geometry around the Cu^{2+} ion.

(I) $R^{1}=\mathrm{H} ; R^{2}=R^{3}=\mathrm{Ph}$
(II) $R^{1}=R^{3}=\mathrm{H}: R^{2}=\mathrm{Ph}$
(III) $R^{1}=\mathrm{Ph}: R^{2}=R^{3}=\mathrm{H}$

In (I), there is a five-coordinated Cu^{2+} ion with distorted square-pyramidal coordination. The basal plane is defined by two cis-N atoms of two phenylpyrazole ligands and two Cl^{-}ions, with the apical Cll^{i} ligand being shared by two adjacent complexes [symmetry code: (i) $-x, 1-y,-z]$; thus, the molecules form dimers. Moreover, an intermolecular $\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 2^{i}$ hydrogen bond also leads to dimerization. The N 21 atom is also involved in an intramolecular $\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{Cl}$ hydrogen bond, but this three-centre interaction is weak, as indicated by the long $\mathrm{H} \cdots \mathrm{Cl}$ distances. A stronger intramolecular hydrogen bond is formed by the H11 atom ($\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{Cl} 2$; see Table 2 and Fig. 1). The base of the distorted square pyramid is not planar; the deviations of the $\mathrm{N} 12, \mathrm{~N} 22, \mathrm{Cl} 1$ and Cl 2 atoms from their weighted least-squares plane (Nardelli, 1996) are -0.374 (3), 0.530 (4),-0.038 (1) and 0.052 (1) \AA, respectively, and -0.226 (1) \AA for Cul. The C255 atom is disordered over two positions, the most populated site having an occupation factor of 0.68 (5).
In (II), the geometry around the Cu^{2+} ion is best described as square pyramidal with the basal plane formed by the two trans- N atoms of the phenylpyrazole ligands and two Cl^{-}ions; the fifth apical site is occupied by one $\mathrm{Cl}^{1 i}$ ion from a neighbouring molecule [symmetry code: (ii) $\left.x-\frac{1}{2}, \frac{1}{2}-y, z\right]$. Thus, the molecules form chains running along the a axis. The base of the pyramid is not planar; the deviations of the N12, $\mathrm{Cl1}, \mathrm{~N} 22$ and Cl 2 atoms from their weighted leastsquares plane (Nardelli, 1996) are 0.463 (4), -0.050 (1), 0.451 (4) and -0.062 (1) \AA, respectively, with Cu displaced by 0.359 (1) \AA. The N11 and N21 atoms form intramolecular hydrogen bonds ($\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{Cl} 2$ and $\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 2$; see Table 4 and Fig. 2).

In (III) (Fig. 3), the four-coordinated Cu^{2+} ion lies on a twofold axis, with a distorted tetrahedral geometry, being bonded to two Cl^{-}ions and two N atoms of two phenylpyrazole ligands. The dihedral angle between the $\mathrm{N} 12 / \mathrm{Cu} / / \mathrm{Cl} 1$ plane and its symmetry related plane at $(2-x, 1-y, z)$ is $123.0(1)^{\circ}$.

